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Abstract 
 

A large majority of pregnancy loss in cattle 
occurs during the first three weeks after conception, 
particularly during the peri-implantation period. This 
review integrates established and new information on 
the biological role of ovarian progesterone (P4), 
prostaglandins (PGs) and interferon tau (IFNT) in 
endometrial function and conceptus elongation during 
the peri-implantation period of pregnancy in ruminants. 
Progesterone is secreted by the ovarian corpus luteum 
(CL) and is the unequivocal hormone of pregnancy. 
Prostaglandins are produced from both the endometrium 
as well as conceptus trophectoderm during early 
pregnancy. Interferon tau is produced solely by the 
conceptus trophectoderm and is the maternal recognition 
of pregnancy signal that inhibits production of luteolytic 
pulses of PGF2α by the endometrium to maintain the CL 
and thus production of P4. Conceptus-endometrial 
interactions in ruminants are complex and involve 
carefully orchestrated temporal and spatial alterations in 
endometrial gene expression during pregnancy. Available 
results support the idea that the individual, interactive, 
and coordinated actions of P4, PGs, and IFNT regulate 
uterine receptivity to conceptus implantation by 
controlling expression of genes in the endometrium and 
that their actions are essential for conceptus elongation. 
One outcome of gene expression changes in the 
endometrial epithelia is alterations in lumenal secretions 
that govern conceptus elongation via effects on the 
trophectoderm. An increased knowledge of conceptus-
endometrial interactions during early pregnancy in 
ruminants is necessary to understand and elucidate the 
causes of infertility and recurrent pregnancy loss and to 
provide a basis for new strategies to improve fertility, 
pregnancy outcomes and thus reproductive efficiency. 
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Introduction 

 
This review integrates established and new 

information on the biological role of ovarian 
progesterone (P4), prostaglandins (PGs) and interferon 
tau (IFNT) in endometrial function and conceptus 
elongation during the peri-implantation period of 
pregnancy in ruminants. This area of reproduction is 

particularly important due to relatively high levels of 
pregnancy loss. In cattle, estimates indicate that 
fertilization rate is 90% with an average calving rate of 
about 55%, indicating an embryonic-fetal mortality of 
about 35% (Diskin et al., 2006). Further, 70 to 80% of 
total embryonic loss occurs during the first 3 weeks 
after insemination (Diskin et al., 2006; Diskin and 
Morris, 2008), particularly between days 7 and 16 
(Diskin and Sreenan, 1980; Roche et al., 1981; Berg et 
al., 2010). Embryo mortality is greater in non-lactating 
cows than heifers (Berg et al., 2010), and early 
pregnancy loss is even greater in high producing 
lactating dairy cattle and can approach 70% (Evans and 
Walsh, 2011; Thatcher et al., 2011). Infertility and 
subfertility are also major cost factors in the cattle 
embryo transfer (ET) industry (Looney et al., 2006). 
Mean survival rate to calving following transfer of in 
vivo-derived embryos from superovulated donors is only 
43% with a range from 31 to 60% (Mcmillan, 1998), 
whereas the mean survival rate after transfer of in vitro-
produced embryos is lower and ranges from 30 to 40% 
(Mcmillan, 1998; Hansen and Block, 2004). Although 
embryonic mortality is certainly a problem in cattle, our 
knowledge of the complex biological and genetic 
mechanisms governing endometrial receptivity and 
conceptus elongation and implantation is limited in 
domestic ruminants (Ulbrich et al., 2013).  

Establishment of pregnancy in domestic 
ruminants (i.e., sheep, cattle, goats) begins at the 
conceptus stage and includes pregnancy recognition 
signaling, implantation, and placentation (Guillomot, 
1995; Spencer et al., 2004, 2007a, 2008). The morula-
stage embryo enters the uterus on days 4 to 6 post-
mating and then forms a blastocyst that contains an 
inner cell mass and a blastocoele or central cavity 
surrounded by a monolayer of trophectoderm. After 
hatching from the zona pellucida (days 8 to 10), the 
blastocyst slowly grows into a tubular or ovoid form 
and is then termed a conceptus (embryo-fetus and 
associated extraembryonic membranes; Guillomot, 
1995; Hue et al., 2012). In sheep, the ovoid conceptus 
of about 1 cm on day 11 begins to elongate on day 12 
and forms a filamentous conceptus of 10 to 15 cm or 
more in length that occupies the entire length of the 
uterine horn ipsilateral to the corpus luteum (CL). In 
cattle, the hatched blastocyst forms an ovoid conceptus 
between days 12 to 14 and is only about 2 mm in length 
on day13. By day 14, the conceptus is about 6 mm, and
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the elongating bovine conceptus reaches a length of about 
60 mm (6 cm) by day 16 and is 20 cm or more by day 19. 
Indeed, the bovine blastocyst/conceptus doubles in length 
every day between days 9 and 16 with a significant 
increase (~10-fold) in growth between days 12 and 15 
(Betteridge et al., 1980; Berg et al., 2010). After day 16 
in sheep and day 19 in cattle, the elongating conceptus 
begins the process of implantation and placentation 
(Guillomot et al., 1981). Conceptus elongation involves 
exponential increases in length and weight of the 
trophectoderm (Wales and Cuneo, 1989) and onset of 
extraembryonic membrane differentiation, including 
gastrulation of the embryo and formation of the yolk sac 
and allantois that are vital for embryonic survival and 
formation of a functional placenta (Guillomot, 1995; Hue 
et al., 2012). Trophoblast elongation observed in 
ruminants is not due to the geometrical change of cell 
shape but is likely the consequence of cell addition 
associated with peculiar plans of cell division or 
intercalation (Wang et al., 2009). 

Blastocyst growth into an elongated conceptus 
does not occur in vitro, as it is dependent on ovarian P4 
and secretions supplied by the endometrium of the 
uterus (Betteridge and Flechon, 1988; Gray et al., 2001b; 
Lonergan, 2011). The trophectoderm of the elongating 
conceptus synthesizes and secretes prostaglandins (PGs) 
and interferon tau (IFNT) in ruminants (Lewis, 1989; 
Ulbrich et al., 2009; Forde and Lonergan, 2012; Dorniak 
et al., 2013b). Interferon tau is the signal for maternal 
recognition of pregnancy in ruminants and is secreted 
predominantly by the elongating conceptus (Roberts et 
al., 2003; Robinson et al., 2006). As a pregnancy 
recognition signal, IFNT ensures continued production of 
P4 by the CL (Thatcher et al., 1989; Spencer et al., 
2007a). Additionally, IFNT stimulates transcription of a 
number of genes and activities of several enzymes in a 
cell-specific manner within the endometrium implicated 
in establishment of uterine receptivity and conceptus 
elongation and implantation (Hansen et al., 1999; 
Spencer et al., 2007a; Dorniak et al., 2013a). The 
endometrium itself, as well as the ovoid and elongating 
conceptuses, produces PGs during early pregnancy 
(Marcus, 1981; Lewis, 1989). The precise role of 
conceptus-derived PGs remains to be determined in cattle 
(Ulbrich et al., 2009); however, PGs regulate conceptus 
growth and elongation in sheep through modulation of 
endometrial genes important for elongation of the 
conceptus (Dorniak et al.,  2011, 2012b).  

The endometrium of the uterus secretes 
substances, collectively termed histotroph, that govern 
elongation of the conceptus via effects on 
trophectoderm proliferation and migration as well as 
attachment and adhesion to the endometrial luminal 
epithelium (LE; Spencer et al., 2007b, 2008; Bazer et 
al., 2010). Histotroph is derived primarily from 
transport and/or synthesis and secretion of substances 
by the endometrial LE and glandular epithelia (GE), and 
it is a complex and rather undefined mixture of proteins, 

lipids, amino acids, sugars, and ions (Bazer, 1975; Gray 
et al., 2001a; Koch et al., 2010; Bazer et al., 2012). The 
recurrent early pregnancy loss observed in uterine gland 
knockout (UGKO) ewes established the importance of 
uterine epithelial-derived histotroph for support of 
conceptus elongation and implantation (Gray et al., 
2001b). Available evidence supports the idea that ovarian 
P4 induces expression of a number of genes, specifically 
in the endometrial epithelia, that are then further 
stimulated by factors from the conceptus (e.g., IFNT and 
PGs) as well as the endometrium itself (e.g., PGs; 
Dorniak et al., 2013a). The genes and functions regulated 
by these hormones and factors in the endometrial 
epithelia elicit specific changes in the intrauterine 
histotrophic milieu necessary for conceptus elongation 
(Spencer et al., 2007b, 2008; Bazer et al., 2010; Forde 
and Lonergan, 2012; Dorniak et al., 2013a). 

 
Progesterone regulation of endometrial function and 

conceptus elongation 
 
Progesterone stimulates and maintains 

endometrial functions necessary for conceptus growth, 
implantation, placentation, and development to term. In 
cattle, concentrations of P4 in early pregnancy clearly 
affect embryonic survival during early pregnancy (Mann 
and Lamming, 2001; Lonergan, 2011). In both lactating 
dairy cows and heifers, there is a strong positive 
association between the post-ovulatory rise in P4 and 
embryonic development. Increasing concentrations of 
P4 after ovulation enhanced conceptus elongation in 
beef heifers (Garrett et al., 1988; Carter et al., 2008), 
dairy cows (Mann et al., 2006), and sheep (Satterfield et 
al., 2006), while lower P4 concentrations in the early 
luteal phase retarded embryonic development in sheep 
and cattle (Nephew et al., 1991; Mann and Lamming, 
2001; Forde et al., 2011a). Supplementation of cattle 
with P4 during early pregnancy has equivocal effects to 
increase embryonic survival (Beltman et al., 2009a). 
However, P4 supplementation is unlikely to rescue 
development of embryos with inherent genetic defects 
or in high-producing dairy cows (Mann et al., 2006; 
Lonergan et al., 2007; Wiltbank et al., 2011). 

Progesterone predominantly exerts an indirect 
effect on the conceptus via the endometrium to regulate 
blastocyst growth and conceptus elongation (Clemente 
et al., 2009; Forde et al., 2011a; Larson et al., 2011). 
Similar to the human (Giudice and Ferenczy, 1996; Kao 
et al., 2002), endometria of both cyclic and pregnant 
sheep and cattle express genes implicated in uterine 
receptivity, which can be defined as a physiological 
state of the uterus when conceptus growth and 
implantation for establishment of pregnancy is possible. 
The absence of a sufficiently developed conceptus to 
signal pregnancy recognition results in those genes being 
‘turned off’ as luteolysis ensues and the animal returns to 
estrus for another opportunity to mate. The outcome of 
the P4-induced changes in the cyclic and pregnant uterus
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is to modify the intrauterine milieu, such as an increase in 
select amino acids, glucose, cytokines, and growth factors 
in histotroph, for support of blastocyst growth into an 
ovoid conceptus and elongation to form a filamentous 
conceptus (Spencer et al., 2008; Bazer et al., 2010; Forde 
and Lonergan, 2012). 

 
Sheep 
 

Actions of ovarian P4 on the uterus are 
essential for conceptus survival and growth in sheep 
(Satterfield et al., 2006). Between days 10 and 12 after 
onset of estrus or mating in cyclic and pregnant ewes 
(Fig. 1 and Table 1), P4 induces the expression of many 
conceptus elongation- and implantation-related genes. 
The initiation of expression of those genes requires P4 
action and is temporally associated with the loss of 
progesterone receptors (PGR) between days 10 and 12 
in the endometrial LE and between days 12 and 14 to 16 
in the GE after onset of estrus; however, PGR 
expression is not lost in the stroma or myometrium in 
the ovine uterus (Spencer and Bazer, 2002). In the 

endometrial LE and superficial GE (sGE), P4 induces 
genes that encode secreted attachment and migration 
factors (galectin-15 [LGALS15], IGFBP1), intracellular 
enzymes (prostaglandin G/H synthase and 
cyclooxygenase 2 [PTGS2] and hydroxysteroid (11-
beta) dehydrogenase 1 [HSD11B1]), secreted proteases 
(cathepsin L [CTSL]), secreted protease inhibitors 
(cystatin C [CST]3 and 6), a secreted cell proliferation 
factor (gastrin releasing peptide [GRP]), glucose 
transporters (SLC2A1, SLC2A5, SLC5A1), and a 
cationic amino acid (arginine, lysine, and ornithine) 
transporter (SLC7A2; Spencer et al., 2007a, 2008; 
Bazer et al., 2010). In the endometrial GE, P4 induces 
genes that encode for a secreted cell proliferation factor 
(GRP), a glucose transporter (SLC5A11), secreted 
adhesion protein (secreted phosphoprotein one or 
SPP1), a regulator of calcium/phosphate homeostasis 
(stanniocalcin one or STC1), and an immunomodulatory 
factor (SERPINA14, also known as uterine milk 
proteins or uterine serpins). Several of the P4-induced 
epithelia genes are further stimulated by the actions of 
PGs and/or IFNT. 
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Figure 1. Schematic illustrating the effects of ovarian hormones and factors from the endometrium and conceptus 
trophectoderm on expression of elongation- and implantation-related genes in the endometrial epithelia of the ovine 
uterus during early pregnancy. Progesterone action for 8-10 days down-regulate expression of the progesterone 
receptor (PGR). The loss of PGR is correlated with the induction of many genes in the endometrial LE and sGE, 
including PTGS2 involved in prostaglandin (PG) production in both cyclic and pregnant ewes. If the ewe is pregnant, 
the trophectoderm synthesizes and secretes PGs and interferon tau (IFNT) that act on the endometrium in a cell-specific 
manner to up-regulate the expression of many P4-induced genes that govern endometrial functions and/or elongation of 
the conceptus. Legend: GE, glandular epithelia; IFNT, interferon tau; LE, luminal epithelium; PG, prostaglandins; 
PGR, progesterone receptor; sGE, superficial glandular epithelia. Adapted from Dorniak et al. (2012). 
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Table 1. Effects of ovarian progesterone and intrauterine infusions of interferon tau (IFNT) or prostaglandins (PGs) 
on elongation- and implantation-related genes expressed in the endometrial epithelia of the ovine uterus1 

Gene symbol Progesterone IFNT PGs2  
Transport of glucose  
SLC2A1 ↑ + +  
SLC2A5 n.d. n.e. +  
SLC2A12 n.d. + n.e. or +  
SLC5A1 ↑ + n.e. or +  
SLC5A11 ↑ + n.e. or +  
Transport of amino acids 
SLC1A5 n.d. n.d. +  
SLC7A2 ↑ + n.e.  
Cell proliferation, migration and(or) attachment 
GRP ↑ + +  
IGFBP1 ↑ + ++  
LGALS15 ↑ ++ ++  
SPP1 ↑ + n.d.  
Proteases and their inhibitors 
CTSL ↑ ++ n.e. or +  
CST3 ↑ + n.e. or +  
CST6  + n.e.  
Enzymes 
HSD11B1 ↑ + ++  
PTGS2 ↑ n.e. (+ activity) n.e. (+ activity)  
Transcription factors 
HIF1A ↑ + n.e. or +  
HIF2A ↑ + n.e. or +  

1Effect of hormone or factor denoted as induction (↑), stimulation (+), no effect (n.e.), decrease (−) or not 
determined (n.d.). 2Summary data for infusion of PGE2, PGF2α, or PGI2 (Dorniak et al., 2012). 
 
 
Cattle 
 

Comparisons of the endometrial transcriptome 
in cyclic and pregnant heifers (days 5, 7, 12, and 13) 
found no difference prior to pregnancy recognition 
(days 15 or 16; Forde et al., 2011b; Bauersachs et al., 
2012). Indeed, the major changes required to drive 
conceptus elongation and establish uterine receptivity to 
implantation occur between days 7 and 13 in response 
to ovarian P4, irrespective of whether an appropriately 
developed embryo/conceptus is present or not (Forde et 
al., 2009, 2010, 2011a, b, 2012b; Simmons et al., 2009; 
Forde and Lonergan, 2012). Similar to sheep, PGR 
protein is lost from the LE by day 13 and in the GE by 
day 16, and PGR loss is associated with the down- and 
up-regulation of genes expressed in the endometrial 
epithelia (Okumu et al., 2010). Using a global gene 
profiling approach, studies have identified the temporal 
changes that occur in endometrial gene expression in 
both cyclic (Forde et al., 2011a) and pregnant (Forde et 
al., 2009) heifers following an elevation or diminution 
of post-ovulatory P4 during metestrus that promotes or 
delays conceptus elongation, respectively (Beltman et 
al., 2009b; Clemente et al., 2009; Forde et al., 2011a). 
As summarized in a recent review by Forde and 
Lonergan (Forde and Lonergan, 2012), the expression 
of several genes are lost in the LE and GE, including 

PGR and a protease (alanyl (membrane) aminopeptidase 
[ANPEP]), and in the GE, including a lipase 
(lipoprotein lipase [LPL]), protease (matrix 
metallopeptidase 2 [MMP2]) and immunomodulatory 
protein with antimicrobial activity (lactotransferrin 
[LTF]) detween days 7 and 13 after onset of estrus or 
mating in cyclic and pregnant heifers. As expected, 
many conceptus elongation- and implantation-related 
genes appear in the endometrial epithelia between days 
7 and 13 in cyclic and pregnant heifers. Genes up-
regulated in the LE encode a mitogen (connective tissue 
growth factor [CTGF]) and in the GE encode a transport 
protein (retinol binding protein 4 [RBP4]), a glucose 
transporter (SLC5A1), and a protein involved in 
transport and cell proliferation (fatty acid binding 
protein 3 [FABP3]). Further, some genes are up-
regulated in both the LE and GE that encode secreted 
attachment and migration factors (lectin, galactoside-
binding, soluble, 9 [LGALS9] and IGFBP1) as well as 
an intracellular enzyme (PTGS2). It is quite clear that 
substantial differences in gene expression occur 
between the receptive endometrium of sheep and cattle, 
as one of the most abundant genes (LGALS15) induced 
by P4 and stimulated by IFNT in the endometrium of 
sheep is not expressed in cattle (Lewis et al., 2007). 
However, PTGS2 and IGFBP1 are common endometrial 
receptivity markers and regulators of conceptus
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elongation in both sheep and cattle (Simmons et al.,  
2009; Dorniak et al.,  2012a). 

 
Interferon tau regulation of endometrial function 

and conceptus elongation 
 
Maternal recognition of pregnancy is the 

physiological process whereby the conceptus signals its 
presence to the maternal system and prolongs the 
lifespan of the ovarian CL (Bazer et al., 1991). In 
ruminants, IFNT is the pregnancy recognition signal 
secreted by the elongating conceptus that acts on the 
endometrium to inhibit development of the luteolytic 
mechanism (Spencer et al., 1996, 2007b; Spencer and 
Bazer, 2004; Bazer et al., 2010). The antiluteolytic 
effects of IFNT are to inhibit transcription of the 
estrogen receptor alpha (ESR1) gene in sheep and 
oxytocin receptor (OXTR) gene in both sheep and cattle 
specifically in the endometrial LE. The absence of 
OXTR in the endometrium prevents the release of 
luteolytic pulses of PGF2α, thereby sustaining lifespan 
of the CL and P4 production. Although IFNT inhibits 
OXTR expression, it does not inhibit expression of 
PTGS2, which is important for the generation of PGs 
that are critical regulators of conceptus elongation 
during early pregnancy (Dorniak et al.,  2011). In 
addition to antiluteolytic effects, IFNT acts in a 
paracrine manner on the endometrium to induce or 
enhance expression of ISGs that are hypothesized to 
regulate uterine receptivity and conceptus elongation 
and implantation (Hansen et al., 1999, 2010; Spencer et 
al., 2008; Bazer et al.,  2009a). 
 
Classical type I IFN-stimulated genes in the 
endometrium 
 

A number of transcriptional profiling 
experiments conducted with human cells, ovine 
endometrium, bovine endometrium, and bovine 
peripheral blood lymphocytes have elucidated classical 
ISG induced by IFNT during pregnancy (Spencer et al., 
2007a, 2008; Ott and Gifford, 2010; Forde et al., 2011b; 
Bauersachs et al., 2012). In cattle, comparisons of days 
15 to 18 pregnant and non-pregnant or cyclic endometria 
revealed conceptus effects on endometrial gene 
expression, particularly the induction or up-regulation of 
classical IFN-stimulated genes (ISGs; Bauersachs et al., 
2006, 2012; Forde et al., 2009, 2011b; Cerri et al., 
2012; Forde and Lonergan, 2012). In sheep, ISG15 
(ISG15 ubiquitin-like modifier) is expressed in LE of 
the ovine uterus on days 10 or 11 of the estrous cycle 
and pregnancy, but are undetectable in LE by days 12 to 
13 of pregnancy (Johnson et al., 1999b). In response to 
IFNT from the elongating conceptus, ISG15 is induced 
in the stratum compactum stroma and GE by days 13 to 
14, and expression extends to the stratum spongiosum 
stroma, deep glands, and myometrium as well as 
resident immune cells of the ovine uterus by days 15 to 

16 of pregnancy (Johnson et al., 1999b, 2000). As IFNT 
production by the conceptus trophectoderm declines, 
expression of ISG in the stroma and GE also declines, 
but some remain abundant in endometrial stroma and 
GE on days 18 to 20 of pregnancy. Similar temporal and 
spatial alterations in ISG15 expression occur in the 
bovine uterus during early pregnancy (Johnson et al., 
1999a; Austin et al., 2004).  

In vivo studies revealed that the majority of 
classical ISG (B2M, GBP2, IFI27, IFIT1, ISG15, IRF9, 
MIC, OAS, RSAD2, STAT1, and STAT2) are not induced 
or up-regulated by IFNT in endometrial LE or sGE of 
the ovine uterus during early pregnancy (Johnson et al., 
1999b, 2001; Choi et al.,  2001, 2003; Song et al., 
2007). This finding was initially surprising, because all 
endometrial cell types express IFNAR1 (interferon 
[alpha, beta, and omega] receptor 1) and IFNAR2 
subunits of the common Type I IFN receptor (Rosenfeld 
et al., 2002). Further, bovine endometrial, ovine 
endometrial, and human 2fTGH fibroblast cells were 
used to determine that IFNT activates the canonical 
janus kinase-signal transducer and activator of 
transcription-interferon regulatory factor (JAK-STAT-
IRF) signaling pathway used by other Type I IFNs 
(Stark et al., 1998). About the same time, it was 
discovered that IRF2, a potent transcriptional repressor 
of ISG (Taniguchi et al., 2001), is expressed specifically 
in the endometrial LE and sGE and represses 
transcriptional activity of IFN-stimulated response 
element (ISRE)-containing promoters (Spencer et al., 
1998; Choi et al.,  2001). In fact, all components of the 
ISGF3 transcription factor complex (STAT1, STAT2, 
IRF9) and other classical ISGs (B2M, GBP2, IFI27, 
IFIT1, ISG15, MIC, OAS) contain one or more ISRE in 
their promoters. Thus, IRF2 in LE appears to restrict 
IFNT induction of most classical ISG to stroma and GE 
of the ovine uterus (Dorniak et al., 2013a). The 
silencing of MIC and B2M genes in endometrial LE or 
sGE during pregnancy may be a critical mechanism 
preventing immune rejection of the semi-allogeneic 
conceptus (Choi et al., 2003). As IRF2 is not expressed 
in other uterine cell types, classical ISG are 
substantially increased in the endometrial stroma, GE 
and immune cells by IFNT from the conceptus during 
early pregnancy by IFNT. Of particular note, several 
reports indicate induction or increases in ISGs in 
peripheral blood lymphocytes and the CL during 
pregnancy of sheep and cattle or in ewes receiving 
intrauterine injections of IFNT (Hansen et al., 2010; Ott 
and Gifford, 2010). Recent evidence indicates that IFNT 
traffics out of the uterus to exert systemic effects that 
alter maternal physiology, such as function of the CL 
(Bott et al., 2010; Hansen et al., 2010). 

One challenge has been to determine which of 
the large number of classical ISGs induced in the 
endometrium by IFNT have a biological role in 
conceptus-endometrial interactions, given that they have 
traditionally been associated with cellular antiviral
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responses as the main function of Type I IFN is to 
inhibit viral infection (Pestka, 2007). One classical ISG 
with reported biological effects on trophectoderm 
growth and adhesion in ruminants is CXCL10 
[chemokine (C-X-C motif) ligand 10; alias IP-10], a 
member of the C-X-C chemokine family that regulates 
multiple aspects of inflammatory and immune responses 
primarily through chemotactic activity toward subsets of 
leukocytes (Nagaoka et al., 2003a, b). ISG15 conjugates 
to intracellular proteins through a ubiquitin-like 
mechanism (Hansen et al., 1999), and deletion of Isg15 
in mice results in 50% pregnancy loss manifest during 
early placentation (Ashley et al., 2010). In addition, MX 
proteins are thought to regulate secretion through an 
unconventional secretory pathway (Toyokawa et al., 
2007). The enzymes which comprise the 2',5'-
oligoadenylate synthetase (OAS) family regulate 
ribonuclease L antiviral responses and may play 
additional roles in control of cellular growth and 
differentiation (Johnson et al., 2001).  

 
Non-classical IFNT-stimulated genes in the 
endometrium 
 

Although IFNT is the only known IFN to act as 
the pregnancy recognition signal, IFN appear to have a 
biological role in uterine receptivity, decidualization, 
and placental growth and development in primates, 
ruminants, pigs, and rodents (Hansen et al., 1999; Bazer 
et al.,  2009a). Transcriptional profiling of human U3A 
(STAT1 null) cells and ovine endometrium, as well as 
candidate gene analyses were used to discover novel 
‘non-classical’ ISG in the endometrial LE during 
pregnancy such as WNT7A (wingless-type MMTV 
integration site family, member 7A), LGALS15, CTSL, 
CST3, HSD11B1, and IGFBP1 (Kim et al., 2003a; Song 
et al., 2005, 2006; Gray et al., 2006; Satterfield et al., 
2006). 

Subsequently, a series of transcriptomic and 
candidate gene studies found that IFNT stimulates 
expression of a number of elongation- and implantation-
related genes that are initially induced by P4 (CST3, 
CST6, CTSL, GRP, HSD11B1, IGFBP1, LGALS15, 
SLC2A1, SLC2A5, SLC5A11, SLC7A2) specifically in the 
endometrial LE, sGE, and/or GE (Spencer et al., 2007a, 
2008; Bazer et al., 2009a, b; Fig. 1). None of those genes 
are classical Type I ISG, and they are referred to as ‘non-
classical or novel’ ISG. Indeed, IFNT stimulation of 
those non-classical ISG requires induction by P4 and loss 
of PR in the epithelia. Importantly, all of the non-classical 
ISG encode factors that have actions on the 
trophectoderm (proliferation, migration, attachment 
and/or adhesion, nutrient transport) important for 
conceptus elongation (Table 1). The effects of IFNT in 
the bovine endometrium are not as well understood in 
terms of non-classical ISGs, but recent studies have 
started to unravel those effects in cattle (Forde et al., 
2011b, 2012a; Bauersachs et al., 2012). 

Given that the critical signaling components of 
the JAK-STAT signaling system (STAT1, STAT2, 
IRF9) are not expressed in endometrial LE or sGE 
(Choi et al., 2001), IFNT must utilize a noncanonical, 
STAT1-independent signaling pathway to regulate 
expression of genes in endometrial LE and sGE of the 
ovine uterus. The noncanonical pathway mediating 
IFNT stimulation of genes in the endometrial LE and 
sGE has not been entirely elucidated, but other Type I 
IFN utilize mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol 3-kinase (PI3K) cascades 
(Platanias, 2005). Recent evidence indicates that IFNT 
activates distinct epithelial and stromal cell-specific 
JAK, epidermal growth factor receptor, MAPK 
(ERK1/2), PI3K-AKT, and/or Jun N-terminal kinase 
(JNK) signaling modules to regulate expression of PGE2 
receptors in the endometrium of the ovine uterus or in 
ovine uterine LE cells in vitro (Banu et al., 2010; Lee et 
al., 2012). As discussed subsequently, recent evidence 
indicates that PTGS2-derived PGs and HSD11B1-
derived cortisol are part of the noncanonical pathway of 
IFNT action on the endometrium in sheep (Dorniak et 
al., 2011, 2012a, b, 2013b). 

 
Prostaglandin regulation of endometrial function 

and conceptus elongation 
 

Results of recent studies in sheep clearly 
support the concept that PGs regulate expression of 
elongation- and implantation-related genes in the 
endometrial epithelia of ruminants during early 
pregnancy and are involved in conceptus elongation 
(Simmons et al.,  2009, 2010; Dorniak et al., 2011; Fig. 
1 and 2). The conceptus and endometria synthesize a 
variety of PGs during early pregnancy in both sheep and 
cattle (Lewis et al., 1982; Lewis and Waterman, 1983; 
Lewis and Waterman, 1985; Lewis, 1989; Charpigny et 
al., 1997a, b). The endometrium and uterine lumen also 
contains and produces substantially more PG during 
early pregnancy than during the estrous cycle 
(Ellinwood et al., 1979; Marcus, 1981; Ulbrich et al., 
2009). Prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and cyclooxygenase) or 
PTGS2 is the dominant cyclooxygenase expressed in 
both the endometrium and trophectoderm of the 
elongating conceptus (Charpigny et al., 1997a, b). 
Although the antiluteolytic effects of IFNT are clearly 
to inhibit expression of the OXTR in the endometrial LE 
and sGE of early pregnant ewes, it does not impede up-
regulation of PTGS2, a rate-limiting enzyme in PG 
synthesis (Charpigny et al., 1997b; Kim et al., 2003b). 
As illustrated in Fig. 1, PTGS2 expression appears 
between days 10 and 12 post-estrus and mating in the 
endometrial LE and sGE and is induced by ovarian P4 
(Charpigny et al., 1997b; Simmons et al., 2010). In the 
bovine uterus, PTGS2 is also not down-regulated in 
endometria of early pregnant cattle, but rather is up-
regulated by IFNT (Arosh et al., 2004; Emond et al., 
2004); indeed, IFNT acts as a molecular switch that
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stimulates PGE2 production in the bovine endometrium 
(Krishnaswamy et al., 2009). Further, Type I IFNs were 
found to stimulate phospholipase A2 (PLA2) and 
synthesis of PGE2 and PGF2α in several different cell 
types over 25 years ago (Fitzpatrick and Stringfellow, 
1980; Fuse et al., 1982). 

Prostaglandins clearly regulate endometrial 
functions and conceptus elongation during early 
pregnancy (Simmons et al., 2010; Dorniak et al., 2011, 
2012a, b; Table 1 and Fig. 2). In sheep, PTGS2 activity in

the endometrium is stimulated by IFNT, and PTGS2-
derived PG were found to mediate, in part, the effects of 
P4 and IFNT on the endometrium of the ovine uterus. In 
those studies, the abundance of HSD11B1 and IGFBP1 
mRNA in the endometrium was considerably reduced 
by intrauterine infusion of meloxicam, a selective 
PTGS2 inhibitor. Both HSD11B1 and IGFBP1 are 
upregulated by PGs in the ovine placenta and human 
uterine decidua, respectively (Strakova et al., 2000; 
Michael et al., 2003; Michael and Papageorghiou, 2008). 
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Prostaglandins are essential for conceptus 
elongation, as intrauterine infusions of meloxicam 
prevented conceptus elongation in early pregnant sheep 
(Simmons et al., 2010; Dorniak et al.,  2011). The 
elongating conceptuses of both sheep and cattle 
synthesize and secrete more PG than the underlying 
endometrium (Lewis et al., 1982; Lewis and Waterman, 
1983; Lewis, 1989). Thus, PG levels are much greater 
in the uterine lumen of pregnant as compared with 
cyclic or nonpregnant cattle (Ulbrich et al., 2009). Day 
14 sheep conceptuses in vitro release mainly 
cyclooxygenase metabolites including PGF2α, 6-keto-
PGF1α (i.e., a stable metabolite of PGI2), and PGE2 
(Charpigny et al., 1997a), and day 16 conceptuses 
produce substantially more of those PG than day 14 
conceptuses (Lewis and Waterman, 1985). Given that 
membrane and nuclear receptors for PGs are present in 
all cell types of the endometrium and conceptus during 
early pregnancy (Cammas et al., 2006; Dorniak et al.,  
2011), PTGS2-derived PGs from the conceptus likely 
have paracrine, autocrine, and perhaps intracrine 
effects on endometrial function and conceptus 
development during early pregnancy. Indeed, 
expression of PTGS2 in biopsies of day 7 bovine 
blastocysts is a predictor of the successful 
development of that blastocyst to term and delivery of 
a live calf (El-Sayed et al., 2006). Recently, Dorniak 
and coworkers (Dorniak et al., 2012a) infused PGE2, 
PGF2α, PGI2, or IFNT at the levels produced by the 
day 14 conceptus into the uterus of cyclic ewes. In that 
study, expression of GRP, IGFBP1, and LGALS15 
were increased by PGE2, PGI2, and IFNT, but only 
IFNT increased CST6 (Table 1). Differential effects of 
PG were also observed for CTSL and its inhibitor 
CST3. For glucose transporters, IFNT and all PG 
increased SLC2A1, but only PG increased SLC2A5 
expression, whereas SLC2A12 and SLC5A1 were 
increased by IFNT, PGE2, and PGF2α. Infusions of all 
PG and IFNT increased the amino acid transporter 
SLC1A5, but only IFNT increased SLC7A2. In the 
uterine lumen, only IFNT increased glucose levels, and 
only PGE2 and PGF2α increased total amino acids 
(Dorniak et al.,  2012a). Thus, available results 
support the idea that PG and IFNT from the conceptus 
coordinately regulate endometrial functions important 
for growth and development of the conceptus during 
the peri-implantation period of pregnancy (Dorniak et 
al.,  2013a). In fact, pregnancy rates were substantially 
reduced in heifers that received meloxicam, a partially 
selective inhibitor of PTGS2, on day 15 after 
insemination (Erdem and Guzeloglu, 2010). Thus, PGs 
are critical regulators of conceptus elongation and 
implantation in ruminants, as they are for blastocyst 
implantation and decidualization during pregnancy in 
mice, rats, hamsters, mink, and likely humans (Dey et 
al., 2004; Wang and Dey, 2006; Kennedy et al., 2007). 
 

Conclusions 
 

The individual, additive and synergistic actions 
of P4, IFNT, and PGs regulate expression of elongation- 
and implantation-related genes in the endometrial 
epithelia and that P4 and PGs are essential regulators of 
conceptus elongation in ruminants. The outcome of 
these carefully orchestrated changes in gene expression 
is secretion or transport of substances (e.g., glucose, 
amino acids, proteins) from the endometrium into the 
uterine lumen that govern conceptus survival and 
elongation via effects on trophectoderm proliferation, 
migration, attachment, and adhesion. Recent studies 
indicate that some, but not all, of the same mechanisms, 
pathways and factors regulate conceptus elongation in 
cattle are conserved between cattle and sheep 
(Bauersachs et al., 2008; Spencer et al., 2008; Forde et 
al., 2011b; Forde and Lonergan, 2012). One important 
area of future research is determining which 
endometrial genes and products are critical determinants 
of uterine receptivity and early pregnancy success. This 
knowledge should be useful to develop genetic tools 
essential to select animals for enhanced fertility. 
Improvement of functional traits using conventional 
approaches of quantitative genetics is difficult, because 
most reproductive traits are complex (polygenic) with 
low heritability (Weigel, 2006; Veerkamp and Beerda, 
2007). McMillan and Donnison (1999) summarized a 
novel approach for experimentally identifying high and 
low fertility heifers based on early pregnancy success 
using serial transfer of in vitro-produced embryos. Of 
note, those investigators suggested that a failure in the 
mechanism involved in conceptus elongation and 
maternal recognition of pregnancy was a major cause of 
early pregnancy loss in low fertility heifers (Mcmillan 
and Donnison, 1999; Peterson and Lee, 2003). 
Accordingly, the selected high fertility heifers would 
have a uterus that was superior in the ability to support 
growth and development of the conceptus. Thus, natural 
variation in early pregnancy rates in cattle can be used 
to define genes and pathways important for endometrial 
receptivity and essential for early pregnancy loss and 
success. Other ruminant models to understand 
endometrial receptivity and pregnancy loss include: (a) 
the UGKO ewe (Gray et al., 2002); (b) heifers versus 
cows (Berg et al., 2010); (c) non-lactating versus 
lactating cows (Cerri et al., 2012); (d) advanced versus 
delayed post-ovulatory rise in P4 (Lonergan, 2011; 
Forde and Lonergan, 2012); and (e) recessive lethal 
mutations that manifest in defective conceptus 
elongation and/or epiblast formation (Charlier et al., 
2012). A systems biology approach is necessary to 
understand the multifactorial phenomenon of recurrent 
pregnancy loss and provide a basis for new strategies to 
improve pregnancy outcomes, fertility, and reproductive 
efficiency in ruminant livestock. 
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